South China Geographical Journal >
Research on the Evolution Mechanism of the Innovation Network of the Electronic Information Industry Cluster in the Pearl River Delta from the Perspective of Multi-dimensional Proximity
Received date: 2023-02-26
Revised date: 2023-06-26
Online published: 2023-09-25
This paper takes the electronic information industry cluster in the Pearl River Delta as the research object, collects the joint application for invention patents in the Pearl River Delta region as the data source, uses the social network analysis method to construct the cluster innovation network, and describes the evolution process of the network space pattern. From the perspective of multi-dimensional proximity, its evolution mechanism is analyzed and discussed. The results show that: (1) The spatial pattern of the Pearl River Delta network has changed from a "core-periphery" structure to a multi-core development, and the status of Dongguan and Foshan in the network has been further improved, sharing the pressure for Guangzhou and Shenzhen; (2) Geographical proximity, organizational proximity and technological proximity play a significant role in driving the development and evolution of the electronic information industry cluster in the Pearl River Delta; (3) With the different stages of industrial development, the influence of proximity also varies; (4) There is a mutual substitution effect between geographic proximity and organizational proximity, and a complementary effect between organizational proximity and technical proximity; (5) Individual and network structure attributes have an important impact on the evolution of the Pearl River Delta cluster innovation network.
DUAN Jie , WANG Wei . Research on the Evolution Mechanism of the Innovation Network of the Electronic Information Industry Cluster in the Pearl River Delta from the Perspective of Multi-dimensional Proximity[J]. South China Geographical Journal, 2023 , 1(2) : 27 -38 . DOI: 10.20125/j.2097-2245.202302003
表1 模型回归结果1Tab.1 Model regression results 1 |
变量 | 2000—2004年 | 2005—2009年 | ||
---|---|---|---|---|
参数 | 边际效应 | 参数 | 边际效应 | |
0.221 5 (0.46) | 3.836 3 (0.48) | -0.180 2** (-2.09) | -3.335 8 (-1.86) | |
2.066 0** (2.30) | 35.777 5 (2.21) | 0.644 3*** (2.86) | 11.928 6 (1.76) | |
1.591 2 (0.34) | 27.556 3 (0.32) | 3.142 1*** (7.37) | 58.170 9 (2.57) | |
-1.603 6 (-1.59) | -27.769 6 (-1.12) | -0.499 6*** (-2.97) | -9.249 4 (-1.73) | |
-1.305 9 (-0.34) | -22.615 0 (-0.35) | -1.872 5*** (-7.61) | -34.667 0 (-2.47) | |
1.017 3 (0.15) | 17.617 8 (0.15) | 2.793 6*** (3.64) | 51.719 6 (2.05) | |
-1.120 8 (-0.20) | -19.409 2 (-0.21) | -2.327 1*** (-4.77) | -43.082 2 (-2.37) | |
0.234 7* (1.81) | 4.064 3 (1.44) | 0.314 5*** (4.93) | 5.822 9 (2.56) | |
0.000 4** (2.55) | 0.006 3 (1.56) | 0.000 1*** (3.16) | 0.002 3 (1.69) | |
0.104 8 (0.56) | 1.814 5 (0.54) | -0.046 3* (-1.68) | -0.858 0 (-1.23) | |
Constant | -1.156 8 (-0.77) | -0.462 5 (-1.29) | ||
Observations | 33 | 33 | 235 | 235 |
表2 模型回归结果2Tab.2 Model regression results 2 |
变量 | 2010—2014年 | 2015—2019年 | ||
---|---|---|---|---|
参数 | 边际效应 | 参数 | 边际效用 | |
0.086 7 (1.37) | 1.643 6 (1.06) | 0.241 5*** (4.49) | 1.414 0 (4.24) | |
0.367 5 (1.60) | 6.967 5 (1.23) | 0.642 7*** (4.06) | 3.762 7 (3.40) | |
2.430 0*** (5.55) | 46.068 8 (1.66) | 2.336 8*** (8.01) | 13.681 7 (5.60) | |
-0.487 6*** (-3.49) | -9.243 5 (-1.53) | -0.280 6*** (-2.67) | -1.642 8 (-2.39) | |
-0.089 1 (-0.41) | -1.690 0 (-0.40) | -0.229 2 (-0.87) | -1.341 8 (-0.87) | |
0.205 9 (0.23) | 3.903 3 (0.23) | 1.270 1** (2.02) | 7.436 4 (1.95) | |
-1.033 8** (-2.02) | -19.598 6 (-1.35) | -2.330 8*** (-4.98) | -13.646 6 (-4.24) | |
0.248 8*** (5.25) | 4.715 9 (1.73) | 0.332 4*** (9.13) | 1.946 4 (5.64) | |
0.000 1*** (6.61) | 0.002 3 (1.42) | 0.000 0*** (2.70) | 0.000 1 (2.47) | |
-0.033 4*** (-6.93) | -0.632 8 (-1.56) | -0.006 7 (-1.57) | -0.039 2 (-1.54) | |
Constant | 0.041 5 (0.15) | -0.872 3*** (-4.03) | ||
Observations | 937 | 937 | 1 380 | 1 380 |
1 |
|
2 |
|
3 |
|
4 |
胡杨, 李郇. 地理邻近对产学研合作创新的影响途径与作用机制[J]. 经济地理, 2016, 36(6): 109-115.
|
5 |
刘凤朝, 肖站旗, 马荣康. 多维邻近性对技术交易网络的动态影响研究[J]. 科学学研究, 2018, 36(12): 2205-2214.
|
6 |
|
7 |
|
8 |
李琳, 王晓峰. 地理邻近与认知邻近对高新区创新绩效的影响——基于社会网络分析[J]. 华东经济管理, 2014, 28(11): 32-37.
|
9 |
Andr Torre Shaw,
|
10 |
|
11 |
|
12 |
马荣康, 刘凤朝. 基于专利许可的新能源技术转移网络演变特征研究[J]. 科学学与科学技术管理, 2017, 38(6): 65-76.
|
13 |
阮平南, 王文丽, 刘晓燕. 技术创新网络多维邻近性演化研究——基于IBM专利合作网络数据[J]. 科技进步与对策, 2018, 35(8): 1-7.
|
14 |
|
15 |
|
16 |
彭英, 姚恒璐, 吴菲. 组织个体创新与合作网络演化机理研究——基于通信业专利数据分析[J]. 科技进步与对策, 2015, 32(6): 24-28.
|
17 |
GlücklerJ,
|
18 |
钟韵, 叶艺华, 魏也华. 基于创新联系的城市网络特征及影响因素研究——以粤港澳地区为例[J]. 科技管理研究, 2020, 40(7): 1-9.
|
19 |
|
20 |
李琳, 张宇. 地理邻近与认知邻近下企业战略联盟伙伴选择的影响机制——基于SIENA模型的实证研究[J]. 工业技术经济, 2015, 34(4): 27-35.
|
21 |
曹兴, 宋长江. 认知邻近性、地理邻近性对双元创新影响的实证研究[J]. 中国软科学, 2017(4): 120-131.
|
22 |
周灿, 曹贤忠, 曾刚. 中国电子信息产业创新的集群网络模式与演化路径[J]. 地理研究, 2019, 38(9): 2212-2225.
|
23 |
潘微微, 菅利荣, 刘涛. 基于关键节点与关键路径的专利集群网络演进研究[J]. 科技进步与对策, 2020, 37(12): 1-8.
|
24 |
|
25 |
阮平南, 王文丽, 刘晓燕. 技术创新网络多维邻近性演化研究——基于IBM专利合作网络数据[J]. 科技进步与对策, 2018, 35(8): 1-7.
|
26 |
王海花, 王蒙怡, 孙银建. 多维邻近性对我国跨区域产学协同创新的影响: 静态与动态双重作用[J]. 科技进步与对策, 2019, 36(2): 44-50.
|
27 |
毕鹏翔, 唐子来, 李紫玥. 创新一体化进程中的长三角城市网络演化——基于技术转移的视角[J]. 城市规划学刊, 2022(1): 35-43.
|
28 |
谢伟伟, 邓宏兵, 苏攀达. 长江中游城市群知识创新合作网络研究——高水平科研合著论文实证分析[J]. 科技进步与对策, 2019, 36(16): 44-50.
|
29 |
刘军. 整体网分析讲义: UCINET软件实用指南[M]. 上海: 格致出版社, 2019.
|
30 |
陈凯, 李志萍, 罗国锋, 等. 技术邻近、本地风投参与对地理邻近的调节作用研究[J]. 工业技术经济, 2017, 36(4): 40-47.
|
31 |
|
/
〈 |
|
〉 |