South China Geographical Journal >
Spatial Distribution and Influencing Factors of Community Next-day Delivery Points: A Case Study of “XingShengYouXuan” Community-Group-Buying in Wuhan City
Received date: 2022-11-05
Revised date: 2023-04-20
Online published: 2023-09-25
Since 2020, waves of COVID-19 have dramatically changed community life. Delivery points in the form of Community-Group-Buying (CGB) have developed in China, challenging the traditional retail industry. Earlier research focused on economics and management, while there was a relative lack of research on the spatial perspective of geography. This paper explored relying targets, operation model, multi-scale spatial distributions, and influencing factors of Community-Group-Buying from the perspective of logistics geography and Community-Life-Circle planning based on 8580 point of interest (POI) data in Wuhan City. Text analysis, spatial analysis, and Geodetector were applied in the study. The results indicated that: the primary relying target of the Community-Group-Buying was community commercial outlets, and multiple types co-existed, with large differences in the operating conditions. The spatial distribution was uneven, with a central-peripheral structure of central concentration and external balance, and a symmetrical distribution in the direction of "northeast-southwest"; in the middle view, it showed "L+O" belt-like clustering; in the micro view, it was as close as possible to the entrances and exits of the community, and basically could be achieved within 5-minute walking distance. The percentage of regional primary industry, gross agricultural output value, road network density, and population density were key influencing factors of the density of CGB self-pickup points, and the explanatory power of regional GDP and population density increased significantly after interacting with other socio-economic factors, over 90%. Finally, suggestions were proposed for the development optimization of Community-Group-Buying in the future and an outlook on further research was provided.
Key words: community-group-buying; spatial distribution; geodetector; point of interests; Wuhan
LIN Zhe , LI Gang , DU Mengjia , XIA Hai , YANG Zhuo . Spatial Distribution and Influencing Factors of Community Next-day Delivery Points: A Case Study of “XingShengYouXuan” Community-Group-Buying in Wuhan City[J]. South China Geographical Journal, 2023 , 1(2) : 71 -83 . DOI: 10.20125/j.2097-2245.202302007
表1 各类自提点购买指数与粉丝数的描述性统计Tab.1 Descriptive statistics of the purchase index and the number of fans |
依托类型 | 数量/个 | 购买指数 | 粉丝数/人 | ||||
---|---|---|---|---|---|---|---|
平均值 | 中位数 | 最大值 | 平均值 | 中位数 | 最大值 | ||
商超 | 2 565 | 14 116.86 | 8 033 | 253 221 | 230.41 | 159 | 2 946 |
烟酒粮油与副食 | 1 601 | 14 329.16 | 8 832 | 352 222 | 187.91 | 131 | 2 272 |
驿站与邮政 | 719 | 13 951.85 | 5 611 | 216 197 | 246.12 | 160 | 2 074 |
生鲜超市 | 356 | 12 612.61 | 5 354 | 119 012 | 197.70 | 120 | 1 497 |
餐厅 | 314 | 5 281.22 | 918 | 135 203 | 104.54 | 28 | 2 946 |
物业住户 | 310 | 10 173.04 | 2 280.5 | 249 321 | 169.73 | 87 | 1 831 |
棋牌室活动室与工作室 | 82 | 5 741.24 | 2 392.5 | 54 787 | 107.49 | 67.5 | 728 |
饮品店与茶室 | 73 | 8 608.30 | 2 573 | 135 732 | 124.60 | 73 | 1 299 |
手机营业厅(移动、联通、电信) | 67 | 11 547.45 | 5 079 | 59 748 | 205.12 | 120 | 1 031 |
文具文体店 | 58 | 14 838.38 | 6 621 | 315 783 | 196.76 | 127 | 2 432 |
服装鞋店 | 47 | 13 880.40 | 3 087 | 126 259 | 189.40 | 104 | 1 305 |
美容美发 | 38 | 8 510.68 | 3 648.5 | 45 574 | 147.16 | 61 | 1 684 |
酒店宾馆 | 34 | 5 413.09 | 495.5 | 50 729 | 61.82 | 12.5 | 343 |
彩票 | 29 | 7 721.38 | 4 661 | 44 616 | 127.41 | 86 | 747 |
母婴店 | 29 | 12 268.28 | 9 202 | 46 829 | 206.17 | 168 | 632 |
表2 因子探测分析结果Tab.2 Factor detection analysis results |
供应链环节 | 探测因素 | 指标 | 作用效果 | q | P |
---|---|---|---|---|---|
采购供应 | 运输距离 | 农业产值 | 负 | 0.89 | 0.02** |
运输时间 | 车辆可通行路网密度 | 正 | 0.96 | 0.00** | |
经营维护 | 地区经济水平 | 地区生产总值 | 正 | 0.20 | 0.97 |
产业结构 | 第一产业占比 | 负 | 0.88 | 0.02** | |
第二产业占比 | 正 | 0.81 | 0.16 | ||
第三产业占比 | 正 | 0.81 | 0.16 | ||
城镇化率 | 常住人口城镇化率 | 正 | 0.64 | 0.28 | |
消费自提 | 人口规模 | 人口密度 | 正 | 0.97 | 0.00** |
居民消费水平 | 社区消费品零售额 | 正 | 0.66 | 0.47 | |
未来发展潜力 | 房地产可开发投资 | 正 | 0.59 | 0.76 |
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
曹艳丽. 社区团购背景下考虑产地直供的生鲜物流网络优化研究[D]. 北京: 北京交通大学, 2021.
|
15 |
刘茜. 生鲜农产品社区团购定价与车辆配送路径协同优化 [D]. 昆明: 昆明理工大学, 2020.
|
16 |
易海燕, 章圳琰. 基于新鲜度损耗的社区团购电商配送中心选址研究[J]. 交通运输工程与信息学报, 2020, 18(2): 59-67.
|
17 |
刘天雨. 时间窗口约束下社区团购生鲜第三方平台仓配模式优化问题研究 [D]. 郑州: 郑州大学, 2019.
|
18 |
郑少华, 刘婷. 社区团购营销模式的现状与发展对策[J]. 北方经贸, 2020(11): 56-58.
|
19 |
|
20 |
|
21 |
谭慧林, 吴玲. 消费者选择社区团购的动机和优化机制研究[J]. 营销界, 2019(33): 137-138.
|
22 |
张爱欢. 虚拟社区网络团购的消费者使用意向影响因素研究[D]. 北京: 北京邮电大学, 2014.
|
23 |
Deborah Li Ting Ng,
|
24 |
WilliamApplebaum. Guidelines for a store-location strategy study[J]. Journal of Marketing, 1966, 30(4):42-45.
|
25 |
唐梦鸽, 罗明良, 魏兰, 等. 基于POI数据的成都市休闲娱乐热点识别[J]. 资源开发与市场, 2018, 34(9): 1191-1195.
|
26 |
李钢, 陈未雨, 杨兰, 等. 武汉市快递自提点的空间格局与集聚模式研究[J]. 地理科学进展, 2019, 38(3): 407-416.
|
27 |
李钢, 杨兰, 贺建雄, 等. 基于POI数据的西安市快递自提点空间格局及空间关系研究——以菜鸟驿站为例[J]. 地理科学, 2018, 38(12): 2024-2030.
|
28 |
刘玲, 李钢, 杨兰, 等. 深圳市快递自提点的空间分布特征与影响因素[J]. 地球信息科学学报, 2019, 21(8): 1240-1253.
|
29 |
|
30 |
|
31 |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
|
32 |
姜磊, 陈星宇, 朱竑. 中国城市养老院的空间分布特征及其分异成因[J]. 地理学报, 2021, 76(8): 1951-1964.
|
33 |
李钢, 陈未雨, 杨兰, 等. 武汉市快递自提点的空间格局与集聚模式研究[J]. 地理科学进展, 2019, 38(3): 407-416.
|
34 |
王滢. 吉林省农产品冷链物流需求影响因素及预测研究[D]. 长春: 吉林农业大学, 2022.
|
35 |
章佳元. 传统零售企业线上线下协同发展的商业模式研究[D]. 杭州: 浙江工业大学, 2013.
|
36 |
张喜才. 电子商务进农村的现状、问题及对策[J]. 农业经济与管理, 2015(3): 71-80.
|
37 |
阎实, 王爽, 李宝岩. 影响现代零售业选址决策的因素分析[J]. 商场现代化, 2006(19): 78-79.
|
38 |
姜亚莉, 蔡心田, 丁振兴. 基于空间分析方法的商业选址研究——以珠海市香洲区为例[J]. 测绘与空间地理信息, 2014, 37(12): 131-133.
|
39 |
才元. 中国房地产业波动对国民经济的影响研究[D]. 长春: 吉林大学, 2007.
|
40 |
陈佳贵, 黄群慧, 钟宏武. 中国地区工业化进程的综合评价和特征分析[J]. 经济研究, 2006(6): 4-15.
|
41 |
项俊波. 中国经济结构失衡的测度与分析[J]. 管理世界, 2008(9): 1-11.
|
/
〈 |
|
〉 |